UNIT 2 REVIEW – DESCRIBING MATTER

For the test you need to understand the following terms, but you also need to be able to categorize matter into these terms. Please <u>define</u> each category in the dotted boxes. Include <u>examples</u> of each.

Compare the STATES OF MATTER by filling in the table.

	Solid	Liquid	Gas
Shape (definite or indefinite?)			
Volume (definite or indefinite?)			
Molecular Speed (fast, medium, slow?)			
Distance between molecules (small, medium, large?)			

What is matter?

Give an example of something measureable that is NOT matter:

What is a solution?

What is a suspension? Is it a heterogeneous or homogeneous mixture?

What is a colloid? Is it a heterogeneous or homogeneous mixture?

Check each choice that is ALWAYS true.

	Pure	Element	Compound	Type of
	Substance			Mixture?
sugar				
Salt water				
air				
Chex - Mix				
milk				
Vinaigrette dressing				
copper				
brass				
Snicker's bar				

Label each portion of the diagram as an element, compound, or mixture.

Match the following separation techniques with the appropriate way it is used. The following separation techniques are meant to only <u>separate mixtures via physical means</u>.

1agneti	c attraction	Sieving	Filtering	Evaporation	Distillation
-	Decanting	Centrifuging	Chror	natography	Crystallization
1.		Separation of	mixtures based on di	fferences in conditions (ex. Boiling point) required to change
	the phase.				
2.		Separation so	lids from liquids base	d on densities. Uses cent	trifugal force to separate denser
	substance at the	bottom and lighter subs	stances at the top.		
3.		. Separation of	a DISSOLVED solid fro	om a solution. Example:	boiling salt water, leaving behind salt
	when water is no	longer there.			
4.		. Separate part	icles of different sizes	s by passing through a m	esh or a net.
5.		. Separate a so	lid from a liquid. The	liquid passes through the	e filter paper leaving behind the solid
	particles.	I	•		
6.		. Separation of	mixtures on the basis	s of differences in their a	ffinity for a stationary and a mobile
-	phase.				-, ,
7.	F	. Separation of	mixtures that leaves	sediments in the bottom	of the container by draining off the
	liquid				
8	nquiu	Separate part	icles based on magne	tic properties	
9. 9		Separation of	a solid- liquid mixtur	e through the formation	of solid crystals from a homogeneous
5.	solution	Separation of			or solid crystals norma normogeneous

How do you know a PROPERTY is physical or chemical?

What are some examples of chemical and physical PROPERTIES?

How do you know a CHANGE is physical or chemical?

What are some examples of chemical and physical CHANGES?

Law of definite proportion:

Name four indicators of a chemical change.	
1.	3.
2.	4.

If 25.0 g of NaOH is added to 33.0 g HCl and 17.0 g of H₂O is produced, what mass of NaCl is also produced?

NaOH + HCl --> H₂O + NaCl