Name \qquad
\qquad

CHEMISTRY UNIT 1 REVIEW - SCIENTIFIC MEASUREMENTS

1. Contrast accuracy and precision.
2. Quantities have two parts, a \qquad and a \qquad .

Determine the amount of significant figures for each problem
3. \qquad 600
5. \qquad 0.00060
4. \qquad 600.
6. \qquad 6.000×10^{12}

Express 0.0032065614 in scientific notation with the following number of sig figs below:
7. 2 sig figs \qquad
8. 4 sig figs \qquad
9. 6 sig figs \qquad
Convert the following scientific notation back into standard notations below with appropriate sigfigs:
10. 4.66×10^{5} \qquad 11. 8.604×10^{-4} \qquad
12. State the significant figure rule for multiplying and dividing, and then solve the problem.

Rule:

$$
\frac{(0.042)}{(1.278)(1.4267)}=
$$

13. State the significant figure rule for adding and subtracting, and then solve the problem.

Rule:

$$
50.23+23.7+14.678=
$$

\qquad
14. Define a derived unit and give an example.
15. The SI base unit for time is \qquad , length is \qquad , and mass is \qquad .
16. Which conversion factor would be used to convert feet to inches: 1 foot or 12 inches? 12 inches $\quad 1$ foot
17. Use dimensional analysis to convert 15 liters to cm^{3}.
18. 5.0 miles $=$ \qquad $\mathrm{mm} \quad(0.621 \mathrm{mi}=1 \mathrm{~km})$
19. 15.78 gallons $=$ \qquad $\mathrm{cm}^{3}(1$ gallon $=3.7854 \mathrm{~L})$
20. $0.334 \mathrm{~g} / \mathrm{cL}=$ \qquad kg / L
21. A student measured the temperature of boiling water and got a reading of $97.5^{\circ} \mathrm{C}$. We know the actual boiling point of water is $100^{\circ} \mathrm{C}$. What is the percentage error?
$\%$ Error $=\frac{\mid \text { accepted }- \text { experimental } \mid}{\text { accepted }} \times 100$
22. When making a graph, which axis does the independent variable go on?

Which axis does the dependent variable go on? \qquad
23. Record the measurement on the right to the correct number of significant figures which includes all the known values, one estimated value, and units:

24. Calculate the mass, in grams, of iron with a given volume of $3.50 \mathrm{~cm}^{3}$. Iron has a density of $7.87 \mathrm{~g} / \mathrm{cm}^{3}$.
25. An unknown substance that has a mass of 15.6 grams. A graduated cylinder was filled initially with 30.0 mL of water but once the substance was dropped into the graduated cylinder, the water rose to 37.5 mL . Calculate the density, in g / mL, of this unknown substance.

Review your lab safety rules and the NFPA safety diamond!

Remember: Exact numbers have an infinite number of significant figures! They will not affect the precision of your equipment. Conversion factors are all exact numbers.

