Name		Period
CHEM	MISTRY UNIT 1 REVIEW – SCI	ENTIFIC MEASUREMENTS
1. Contrast accuracy and	precision.	
2. Quantities have two p	arts, a and a	
Determine the amount of sign	ificant figures for each problem	
3 600 4 600.	5 0.00060 6 6.000 x	10^{12}
Express 0.0032065614 in scie	ntific notation with the following nu	mber of sig figs below :
7. 2 sig figs		
8. 4 sig figs		
9. 6 sig figs		
	ic notation back into standard notati	ons below with appropriate sigfigs:
		11. 8.604 x 10 ⁻⁴
	gure rule for multiplying and dividing	ag, and then solve the problem.
Rule:	((0.042) =
	(1.2	$\frac{(0.042)}{78)(1.4267)} = \underline{\hspace{1cm}}$
13. State the significant fi Rule:	gure rule for adding and subtracting	g, and then solve the problem.
Tuno.	50.23 + 2	23.7 + 14.678 =
14. Define a derived unit	and give an example.	
15. The SI base unit for ti	me is, length is	, and mass is
16. Which conversion fac	tor would be used to convert feet to	inches: 1 foot or 12 inches? 12 inches 1 foot
17. Use dimensional anal	ysis to convert 15 liters to cm ³ .	

18. 5.0 miles = _____ mm (0.621 mi = 1 km)

19.
$$15.78 \text{ gallons} = \underline{\qquad} \text{cm}^3 \text{ (1 gallon } = 3.7854 \text{ L)}$$

20.
$$0.334 \text{ g/cL} = \underline{\hspace{1cm}} \text{kg/L}$$

21. A student measured the temperature of boiling water and got a reading of 97.5°C. We know the actual boiling point of water is 100°C. What is the percentage error?

$$\% Error = \frac{|accepted - experimental|}{accepted} \times 100$$

22. When making a graph, which axis does the *independent variable* go on?

Which axis does the *dependent variable* go on?

23. Record the measurement on the right to the correct number of significant figures which includes all the known values, one estimated value, and units:

- 24. Calculate the mass, in grams, of iron with a given volume of 3.50 cm³. Iron has a density of 7.87 g/cm³.
- 25. An unknown substance that has a mass of 15.6 grams. A graduated cylinder was filled initially with 30.0 mL of water but once the substance was dropped into the graduated cylinder, the water rose to 37.5 mL. Calculate the density, in g/mL, of this unknown substance.

Review your <u>lab safety rules and the NFPA safety diamond!</u>

Remember: Exact numbers have an infinite number of significant figures! They will not affect the precision of your equipment. Conversion factors are all exact numbers.