Empirical and Molecular Formulas

Empirical formula -

Molecular formula -

The molecular formula can also be the same as the empirical formula or any multiple of the empirical formula.

Recognizing empirical and molecular formulas:

Na ₂ SO ₄	H ₂ O ₂	C ₆ H ₁₂ O ₆
H ₂ O	CH ₂ O	Ca(OH) ₂

Calculating empirical formulas:

Step 1:	Change the number of grams given to moles by using the atomic mass of each element. Use at least 4 significant figures!
Step 2:	Determine the mole ratio by dividing each number of moles by the smallest number of moles. If this does produce whole number ratios of moles, multiply all mole ratios by a whole number so that you do have whole numbers.
Step 3:	Use the ratio as subscripts in the formula. The elements usually appear in the problem in the same order that they should appear in the formula.

Example 1: A compound is 12.69% aluminum, 19.73% nitrogen, and 67.57% oxygen. What is the empirical formula of the sample?

Example 2: A sample of a compound contains 171.0 grams of chromium and 79.0 grams is oxygen. Calculate the empirical formula of this compound.

In general: $molecular formula = (empirical formula) \times n$

Solve for n:

 $n = \frac{\text{molecular formula mass}}{\text{empirical formula mass}}$

Once the value of 'n' is known simple multiply the subscripts in the empirical formula by 'n' to obtain the correct subscripts for the molecular formula.

Example 1: Hydrazine (a chemical used to treat waste water) has a molecular mass of 32.0 g/mol. The ratio of NH₂. What is the molecular formula of hydrazine?

Example 2: Most all sugars have an empirical formula of $C_1H_2O_1$. If the molecular mass of an unknown sugar is 180 grams, what is the molecular formula for the unknown sugar?

HOMEWORK: Empirical and Molecular Formula

1. Find the empirical formula for a sample of 25.9 g N and 74.1 g O.

2. The empirical formula for ethylene is CH₂. Find the molecular formula if the molecular mass 28.1 g/mol.

3. If caffeine is 49.5% carbon, 5.20 % hydrogen, 16.5% oxygen, and 28.9% nitrogen. What is the molecular formula if the molar mass of caffeine is 194.1 g/mol?