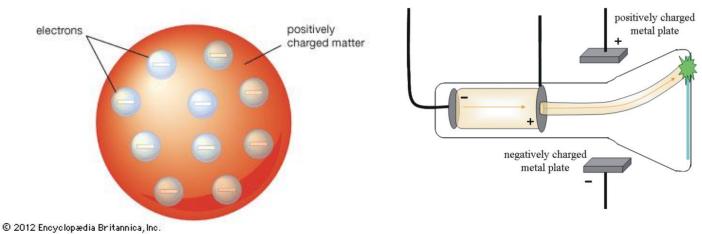

Atomic History & Atomic Structure

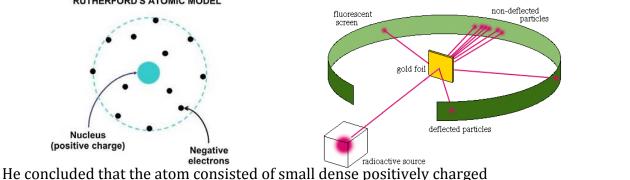
ATOMIC HISTORY- People who contributed to the structure of the ATOM:

1. Democritus (400 B.C.): Greek philosopher who first came up with the idea that all matter was composed of small, indivisible particles. He called these particles

-Everything is made up of it's own type of atoms or small indivisible particle. For example, sand is made up of sand particles, glass is made up of glass particles, aluminum is made up of aluminum particles, etc. Did NOT know about subatomic particles just yet.

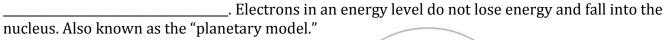

2. John Dalton: First scientist to bring back the idea of the atom. He proposed the Atomic Theory that describes the atom. Dalton's atomic theory was widely accepted because it successfully explained several laws and observations. His model was similar to Democritus' but instead stated that things are made up of atoms based on their elements.

ATOMIC THEORY

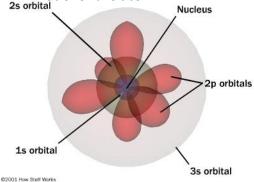

- i. All matter is made of atoms. Atoms are indivisible and indestructible. *
- ii. All atoms of a given element are identical in mass and properties. *
- iii. Compounds are formed by a combination of 2 or more different kinds of atoms.
- iv. A chemical reaction is a rearrangement of atoms.

*Not completely correct; later revised

3. J.J. Thomson: Discovered ________ subatomic particles using the cathode ray tube experiment. He called these negatively charged particles "corpuscles" but is known today as ______.



4. Ernest Rutherford: Physicist who wanted to prove that atoms are most empty space, so he fired positively charged alpha particles (+) at _______. Found out that most went straight through or were slightly deflected, while some bounced straight back!



He concluded that the atom consisted of small dense positively charged _______ surrounding it.

5. Niels Bohr: Scientist who proposed that electrons are arranged in concentric ________ around the nucleus called

- 6. James Chadwick: English physicist who found the ______ by bombarding Beryllium with alpha particles. The radiation was emitted had the mass of a proton but had NO charge.
- 7. Erwin Schrodinger: Austrian scientist who stated that electrons are not in circular orbitals like Bohr predicted, instead they are likely to be found in a specific 3 Dimensional space around the nucleus. He predicted this model using quantum mechanics to calculate the likelihood of finding an electron. This is the MODERN model of the atom.

ATOMIC STRUCTURE:

The electron cloud- a nebulous region around the nucleus where the _____ are found. While miniscule in mass, the cloud makes up the bulk of the atom's size.

Electron energy levels

Nucleus

Composition of the Atom

Subatomic Particle	Symbols	Relative Charge	Mass Number (amu)	Location
Proton				
Neutron				
Electron				

Atomic Number (Z): This is what defines that element. It is equal to the number of ______.

 Mass Number (A):
 The total number of ______ in the nucleus of an isotope. It is always a whole number and is NOT found on the periodic table.

 Isotopes:
 Atoms of the same element with different numbers of ______, therefore different _____.

There are two methods of designating isotopes:

 (Method 1)
 Mass number is added with a hyphen to the name or symbol of the element. Example: uranium-235 or U-235 has 92 protons and 143 neutrons.

 On the left side of the element symbol, the mass number is added as a superscript and the atomic number is added as a subscript.

(Method 2)

 $^{238}_{92}U$ has 92 protons and 143 neutrons.

Ex:	Element	Z	А	#	#	#	symbol
				protons	neutrons	electrons	
1.		23			21		
2.	Carbon				7		
3.	Iron		57				
4.		76	193				
5.	Sulfur		32				$^{32}_{16}S$

<u>Ions</u>:

Ions are _____ atoms.

Example:

When an atom gains or loses electrons, it forms a charged ION, and the number of *p* and *e* are not equal. The charge of the ion is written as a superscript after the symbol. Remember: an atom does NOT gain or lose protons.

Cations: Positively charged ion. Ex: Na⁺¹ = sodium ion, Mg⁺² = Magnesium ion, Al⁺³ = aluminum ion

Anions: Negatively charged ion. Ex: $F^{-1} = \text{fluor}_{ide}$ ion, $O^{-2} = \text{ox}_{ide}$ ion, $N^{-3} = \text{nitr}_{ide}$ ion

Memorize your polyatomic ions and diatomic elements

Ex:	Element	Z	А	#	#	#	symbol
				protons	neutrons	electrons	
1.							${}^{40}_{20}Ca^{+2}$
2.							${}^{32}_{16}S^{-2}$

HOMEWORK: Atomic History and Atomic Structure

Part 1. Atomic History

Match the following philosopher/ scientists with what they contributed to atom we know today.

Democritus Niels Bohr	John Dalton James Chadwick	JJ Thomson Erwin Schrod	Ernest Rutherford inger			
Modern model of the atom.	1. Used quantum mechanics to describe the 3 dimensional region of electrons.					
	2. Proposed the Atomic Theo	ry to describe the atom.				
	3. Used the gold foil experime	ent to discover a dense	positively charged nucleus in			
the center of the atom						
	4. The Greek philosopher who coined the term "atomos."					
	_5. Scientist who used the cath	ode ray tube experime	nt to prove the existence of			
electrons.						
	_6. Came up with the 2D plane	tary model of the atom.	Stated that electrons orbit the			
nucleus in its energy levels.						
	_7. This scientist discovered th	ne neutron of the atom.				

Part 2. Atomic Structure. Fill in the blank boxes.

	Element	Z	А	# protons	# neutrons	# electrons	symbol
	oxygen	8	16	8	8	8	$^{16}_{8}O$
1.			40		20		
2.	carbon		12				
3.		19			20		
4.			4			2	
5.			27	13			
6.			9				${}^{9}_{4}Be$
7.		7	14				
8.	ruthenium						$^{101}_{44}Ru$
9.		78			117		
10.	scandium						$^{45}_{21}Sc$
11.	sodium ion						$^{23}_{11}Na^{+1}$
12.	chloride (ion)						$\begin{array}{r}{}^{45}_{21}Sc\\\\ {}^{23}_{11}Na^{+1}\\\\ {}^{35}_{17}Cl^{-1}\end{array}$