1.3 SCIENTIFIC NOTATION

Scientific notation is also known as exponential notation
Scientists frequently must deal with numbers that are very \qquad or very \qquad .

Scientific notation was created to make a shorter way to write very long numbers.
This system uses a coefficient between 1-9 and powers of 10
General form: $\mathrm{N} \times 10^{\mathrm{n}}$
N is the coefficient and must be between 1-10 n represents how many times the coefficient is multiplied or divided by 10

Putting standard notation into scientific notation:

32,400,000,000

0.0000000567

Class Practice:

Write each of these numbers in scientific notation:

$17=$	$0.00000614=$	
$5134=$		$0.0037004=$
$215=$		$0.00000038=\square$
$7,000,631=\ldots$	$0.01010=$	

Putting scientific notation BACK into standard notation:
If the number ends with a positive exponent, you are multiplying by 10 , therefore move the decimal point to the right. If the number ends with a negative exponent, you are dividing by 10 , therefore move the decimal point to the left.

Write each of the following as ordinary numbers.
$4.29 \times 10^{6}=$ \qquad $4.92 \times 10^{-5}=$
$3.286 \times 10^{4}=$ \qquad $8.429 \times 10^{-1}=$ \qquad
$5.92000 \times 10^{2}=$ \qquad $5.376 \times 10^{-2}=$ \qquad

Fix the incorrectly written scientific notation

$$
524 \times 10^{3}=
$$

\qquad
\qquad

Scientific Notation in your Calculator

$$
1.57 \times 10^{23}
$$

1. Type in the coeffiecent
2. Press the button labeled "2nd"
3. Press the button with the comma, which is also the "EE" key.
4. Enter your exponent.
5. Press enter

This is what it should look like in your calculator before you press "enter":

Let's Practice

1. $\left(2.3 \times 10^{5}\right) \times\left(7.4 \times 10^{8}\right)=$
2. 4.5×10^{-5} 1.6×10^{-2}
3.

$$
\frac{2.7 \times 10^{8}}{5.2 \times 10^{6}+7.23 \times 10^{4}}
$$

MEASUREMENTS

Measurement: Quantitative observation consisting of TWO parts.
\qquad

Examples: 20 grams, 6.63×10^{-34} Joules \bullet seconds, $12.5 \mathrm{~km}, 75 \mathrm{mph}$
The Fundamental Base SI Units

MEMORIZE!!!

Physical Quantity	Name of Unit	Abbreviation
Mass	kilogram	kg
Length	meter	m
Time	second	s
Volume	liter	L
Temperature	Kelvin	K
Amount of Substance	mole	mol

Common Prefixes Used in SI system

-Prefixes are used to change the size of the unit
-Please MEMORIZE the following common prefixes:

Prefix	Symbol	Meaning	Power of 10 for Scientific Notation
kilo-	k	1000	10^{3}
centi-	c	0.01	10^{-2}
milli-	m	0.001	10^{-3}

LENGTH:

-Measurement of distance
-Base SI unit for length is meter (m).
-Common SI units of length:

Unit	Symbol	Meter Equivalent
kilometer	km	$1000 \mathrm{~m} \mathrm{or} 10^{3} \mathrm{~m}$
meter	\mathbf{m}	$\mathbf{1 ~ m}$
centimeter	cm	0.01 m or $10^{-2} \mathrm{~m}$
millimeter	mm	$0.001 \mathrm{~m} \mathrm{or} 10^{-3} \mathrm{~m}$

VOLUME:

-Measurement of the amount of 3-D space occupied by a substance
-Base SI unit for volume is cubic meter $\left(\mathbf{m}^{3}\right)$
-Commonly measure solid volume in cm^{3}

- $1 \mathrm{~mL}=1 \mathrm{~cm}^{3} \quad 1 \mathrm{~L}=1 \mathrm{dm}^{3}$

MASS:
-Measurement of the amount of matter present in an object
-Base SI unit for mass is kilogram (kg).

- $\quad 1 \mathrm{~kg}=2.2046 \mathrm{lbs} \quad 1 \mathrm{lb}=453.59 \mathrm{~g}$

HOMEWORK: Scientific Notation \& Measurements

Express each of the following numbers in scientific notation keeping the correct number of significant figures.

1. 325 \qquad
2. 70 \qquad
3. 96,400 \qquad
4. $6,587,324,000$ \qquad
5. 0.361
6. 0.0428
7. 0.00573
8. 0.00005673 \qquad

Write each of the following as ordinary numbers keeping the correct number of significant figures.
9. 3.9734×10^{5} \qquad
10. 6.285×10^{3} \qquad
11. 6.7978×10^{2} \qquad
12. 3.88×10^{-2}
13. 5.65×10^{-1} \qquad
14. 3.7283×10^{-4} \qquad

Using a calculator, calculate the following and report the answer in correct scientific notation (YOU DON'T HAVE TO WORRY ABOUT SIGNIFICANT FIGURES).
15. $4.4 \times 10^{7}+5.2 \times 10^{2}$
16. $8.2 \times 10^{11} \times 1.4 \times 10^{8}$ \qquad
17. $\frac{5.7 \times 10^{9}}{5.2 \times 10^{10}+5.93 \times 10^{2}}$

Using your notes fill in the blank(s) for each question.
18. The base SI unit for MASS is \qquad , LENGTH is \qquad , and for VOLUME is \qquad .
19. How many meters are in 2 km ?

